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Summary Physical exercise influences the central dopaminergic, noradrenergic and

serotonergic systems. A number of studies have examined brain noradrenaline
(norepinephrine), serotonin (5-hydroxytryptamine; 5-HT) and dopamine with ex-
ercise. Although there are great discrepancies in experimental protocols, the re-
sults indicate that there is evidence in favour of changes in synthesis and
metabolism of monoamines during exercise.

There is a possibility that the interactions between brain neurotransmitters and
their specific receptors could play a role in the onset of fatigue during prolonged
exercise. The data on the effects of branched chain amino acid (BCAA) supple-
mentation and ‘central fatigue’ seem to be conflicting, although recent studies
suggest that BCAA supplementation has no influence on endurance performance.

There are numerous levels at which central neurotransmitters can affect motor
behaviour; from sensory perception, and sensory-motor integration, to motor
effector mechanisms. However, the crucial point is whether or not the changes in
neurotransmitter levels trigger or reflect changes in monoamine release. Until
recently most studies were done on homogenised tissue, which gives no indica-
tion of the dynamic release of neurotransmitters in the extracellular space of living
organisms.

Recently, new techniques such as microdialysis and voltammetry were intro-
duced to measure in vivo release of neurotransmitters. Microdialysis can collect
virtually any substance from the brain of a freely moving animal with a limited
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amount of tissue trauma. This method allows measurement of local neurotrans-
mitter release during on-going behavioural changes such as exercise.

The results of the first studies using these methods indicate that the release of
most neurotransmitters is influenced by exercise. Although the few studies that
have been published to date show some discrepancies, we feel that these recently
developed and more sophisticated in vivo methods will improve our insight into
the relationship between the monoamine and other transmitters during exercise.
Continued quantitative and qualitative research needs to be conducted so that a
further understanding of the effects of exercise on brain neurotransmission can

be gained.

The health benefits of exercise include favour-
able physiological, psychological and biochemical
changes.!!) Research into the physiological effects
of exercise is usually on the muscular or neuromus-
cular systems even though it is apparent that there
is also an influence on the CNS, with convincing
evidence that several neurotransmitters are in-
volved in control of locomotion.[?-8]

Fatigue during prolonged exercise has tradition-
ally been attributed to the occurrence of a ‘metabo-
lic end-point’, where muscle glycogen levels are
depleted, plasma glucose levels are reduced, and
plasma free fatty acid levels are elevated.”) There
is also a ‘central fatigue hypothesis’[19-12] which is
based on the increase in the level of brain serotonin
(5-hydroxytryptamine; 5-HT) during exercise.
However, the physiological mechanisms for cen-
tral fatigue are largely unexplored.

This review will focus on the effects of exercise
on neurotransmission, especially the influence of
exercise on the monoaminergic systems. We will
discuss the possible role and interaction of the
neurotransmitters and their precursors in central fa-
tigue and also in motor behaviour. Finally, recent
developments in the direct measurement of neuro-
transmitter release with microdialysis and voltam-
metry are presented.

This work includes both animal and human
studies. Most of the studies that examined the ef-
fects of exercise on brain neurotransmitters were
performed on animals. When exercise performance
and precursor loading or pharmacological manipu-
lations are discussed we also included the results
of human studies.

© Adis International Limited, All rights reserved.

1. Biosynthesis of Monoamines

The biogenic amines include the catechola-
mines, dopamine, noradrenaline (norepinephrine),
adrenaline (epinephrine), and the indolamine,
serotonin. Tyrosine is the common amino acid pre-
cursor of all catecholamines, while the precursor of
serotonin is the essential amino acid tryptophan.

Monoaminergic neurons modulate a wide range
of functions in the central nervous system.[!3]
Noradrenergic neurons are involved in cardiovas-
cular function, sleep and analgesic responses,
while dopaminergic neurons are linked with motor
function(?) and serotonergic activity is associated
with pain, fatigue, appetite and sleep.!1!

1.1. The Dopaminergic System

Dopaminergic cell groups are found in the mes-
encephalon, the diencephalon and the telencepha-
lon. The main ascending dopaminergic pathways
include the nigrostriatal tractus, the ventral
mesostriatal (or mesolimbic) pathway and the
tubero-infundibular system which arises from cells
located in the diencephalon.['4]

The rate-limiting step in the biosynthesis of
dopamine is the hydroxylation of tyrosine to
dihydroxyphenylalanine (dopa) by the enzyme
tyrosine hydroxylase. The majority of tyrosine
hydroxylase is located in catecholamine nerve
terminals. Tyrosine hydroxylase activity can be
inhibited by the catecholamines, suggesting a feed-
back inhibitory effect. Dopa is decarboxylated to
dopamine by the enzyme dopa-decarboxylase (aro-
matic amino acid decarboxylase). The activity of
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Fig. 1. Biosynthesis and catabolism of the catecholamines. Abbreviations: A = adrenaline (epinephrine); AADC = aromatic L-amino
acid decarboxylase; AAO = L-amino acid oxidase; ADH = alcohol dehydrogenase; COMT = catechol-O-methyl transferase;
DA = dopamine; DBH = dopamine B-hydroxenase; DOPAC = 3,4-dihydroxyphenylacetic acid; HVA = homovanillic acid; L-dopa =
L-dihydroxyphenylalanine; MAO = monoamine oxidase; MHPG = 3-methoxy-4-hydroxyphenylethylene glycol; MN = metanephrine;
3-MT = 3-methoxytyramine; NA = noradrenaline (norepinephrine); NMN = normethanephrine; TH = tyrosine hydroxylase;
PAH = phenylalanine hydroxylase; PDC = pyruvate decarboxylase; PNMT = phenylalanine-N-methyltransferase.

this enzyme is not rate-limiting in the synthesis of
the catecholamines, and is therefore no regulating
factor in their formation. Dopamine is in normal
physiological conditions first metabolised to 3,4-
dihydroxyphenylacetic acid (DOPAC) by mono-
amine oxidase and aldehyde oxidase. DOPAC is
then further metabolised into homovanillic acid by
catechol-O-methyltransferase.!!4]

© Adis International Limited. All rights reserved.

1.2 The Noradrenergic System

The neurons that synthesise noradrenaline (nor-
epinephrine) are restricted to the pontine and med-
ullary tegmental region. The locus coeruleus is
quantitatively the most important noradrenergic
nucleus in the brain. Its efferent fibres constitute a
major ascending pathway, the dorsal noradrenergic

Sports Med. 20 (3) 1995
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bundle. Along its course different branches emerge
to innervate a large number of mesencephalic areas
(dorsal raphe nucleus, thalamus, hypothalamus,
hippocampus, septum and cortex).

In the noradrenergic neurons dopamine is
converted into noradrenaline (norepinephrine)
through dopamine B-hydroxylase.['>) The enzymes
responsible for the catabolism of noradrenaline are
monoamine oxidase and catechol-O-methyl-
transferase. The main metabolite of noradrenaline
is  3-methoxy-4-hydroxyphenylethyleneglycol
(MHPG) [fig. 1].

1.3 The Serotonergic System

Serotonin-containing neurons are present in the
mesencephalon, pons and medulla oblongata. They
are mainly located in the raphe nuclei. Efferent fi-
bres innervate the substantia nigra, various tha-
lamic centres, the nucleus caudatus, the putamen,
the nucleus accumbens, the cortex, and the hippo-
campus. Other serotinergic cells innervate the ven-
tral horn of the spinal cord and the medulla.['9

The synthesis of serotonin requires two enzy-
matic steps. The dietary amino acid precursor tryp-
tophan is first hydroxylated by a tryptophan hy-
droxylase to L-5-hydroxytryptophan (5-HTP) and
then decarboxylated to serotonin. Serotonin itself
is metabolised by 2 enzymes (aldehyde dehydro-
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genase and monoamine oxidase) to 5-hydroxy-
indoleacetic acid (5-HIAA)[fig. 2].

2. Exercise and Brain Monoamines

The first reports that examined the influence of
exercise on brain neurotransmitters appeared in the
1960s.116-19] These studies mostly used exercise as
a stress model, or compared exercise with other
stressors such as exposure to cold.l'”! Since then
several studies have continued to use this approach
comparing or combining exercise with other
stressors such as foot-shock,2% cold,!!7] tail pinch,
immobilisation, or restraint.[21.22l Other studies de-
scribed the influence of exercise on brain mono-
amines as a possible intervention in affective dis-
orders(23:241 and depression.[23-27]

Most of these animal studies, however, exam-
ined brain monoamine levels with acute and
chronic exercise protocols to explore the effects of
a physiological stimulus on brain neurotrans-
mission.

2.1 The Noradrenergic System

Studies that examined whole brain noradrena-
line levels after acute bouts of exercise (running or
swimming) mostly found a decrease,!1618:28] no ef-
fect,!!929] or a small not-significant increase in

HO,

Tryptophan hydroxylase | HZ'(I;H‘COOH
) NHp
N

5-Hydroxytryptophan

5-Hydroxytryptophan decarboxylase
{aromatic amino acid decarboxylase)

HO, CHo—CHp-NH2

T

Serotonin

Fig. 2. Biosynthesis and catabolism of serotonin (5-hydroxytryptamine; 5-HT).
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Table I. The effects of exercise on noradrenaline (norepinephrine)

Reference Animals Exercise Training Brain area Results
Cicardo et al.®®  Wistar rats Swimming in To exhaustion Whole brain 4
Male 23°C
n=:60
Moorel19! Albino mice Running wheel Spontaneous activity ~ Whole brain Administration of oMT: NA L
Male 10 mins
n=8
Moore & S-Drats Swimming 4h 23°C or 37°C Whole brain l
Larivierel'® Female
n = 84 (7 groups)
Barchas & S-D Treadwheel: 3h, Whole brain 10% 4
Freedman('®! Male (200g) 1.8 m/min
n=50each group Swim to 15°C: 15 — 30 mins 1%
exhaustion 23°C: 4 — 6h 26% 4
Sheldon et al.?¥  Swiss-Webster Treadmill: 150 mins + tyrosine C'*  Whole brain No change in synthesis and
mice 5.4 m/min turnover of catecholamines
Female (25-30g) (no specific determination)
Broocks et al.l*%  Wistar rats Running wheel  Spontaneous running  Hypothalamus T in both groups
Male 1 group + food

Rea &
Hellhammer®®!

Stonel®3!

Ostman &
Nyback®2

Acworth et al.l'2

Brown & Van
Huss®%

Decastro &
Duncani?®

n =168 (5 groups)

Wistar rats
n=21

S-b

Male

n=22

S-D

Male

n=24

Male rats

n = 23 (& 5/group)

S-D

Male

n=_80
Long-Evans
hooded rats
Male (290-370g)
n=12

Running wheel

Motor driven
running wheel

Swimming in
35°C

Treadmill: 25
m/min 4° incline
Treadmill 90
mins: 25 m/min
4° incline
Running wheel:
60 mins

Running wheel:
Animals killed
48h after final
training

deprivation

Spontaneous running

3h
5.5 m/min — 8 m/min

17 weeks, 1 — 2.5
h/day

90 mins

5 weeks, 6 days/week
60 mins/day

incline 1° — 4°

8 weeks, 1 h/day

Operant conditioning:

8 weeks, 5 days/week,
2 h/iday

(ran % 1.2 km/day);

not conditioned animals
ran + 0.5 km/day

Preoptic area

Pons medulla
Thalamus
Septum
Neocortex
Cerebellum

Midbrain
Hypothalamus
Striatum
Hippocampus
Hypothalamus

Brainstem

Whole brain

Whole brain

Whole brain

Whole brain

Whole brain

T In both groups

NA MPHG

~ TIn all runner

~ groups

~ compared to

~ control except

~ for septum,
striatum,
hippocampus

T In sedentary food restricted

compared to control

T In running compared to

control, food restricted

T In runners - control

4 In runners - control

NA L, MHPG T; reserpine:

NA L TMHPG

aMT: NA | ~, MHPG!

1

21% T sig.
T In trained animals
oMT depleted brain NA

Small T (NS)
3H-spiperone binding (NS) 4

© Adis Internationalt Limited. All rights reserved.
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Table I. Contd
Reference Animals Exercise Training Brain area Resuilts
Brown et al.l®! Wistar Treadmill 8 weeks, 5 days/week, Whole brain T
Female 30 m/min 30 mins/day (normal Cerebellum T
n =40 diet or fat diet) Midbrain T
Sedentary  Trained
Brown et al.“! Female rats Treadmill 30 mins, 6 weeks Telencephalon 1 =
n=236 (mainly Cortex)
Medulia oblongata 4 )
Hypothalamus 1 4
Elam et al.% Wistar Koyoto Running wheel:  5km/12h Limbic forebrain, T NA synthesis in brain stem
Male spontaneous 7 days striatum, brain
n=25 running, animals stem, cortex,
killed immediately spinal cord
or 24h after last
running period
Sedent. Trained
Blomstrand et Wistar rats Treadmill: Sedentary Cortex Not Not measured
al.le9 Female (200-220g) sedentary, accommodation: measured
n = +5/group +17m/min 7° 10 mins/day — low Cerebellum ~ =
incline RTE: speed Hippocampus ~ ~
trained, +#30-35  Trained: 11 weeks 6 Striatum 67% T 55% T
m/min 7°incline  days/week 1 h/day, 3 Brainstem ~ ~
cm/min 7° incline Hypothalamus 32% T(NS)  15% L (NS)
Sudol®”) SD Swimming 4h: Hypothalamus Sig. | from 15 mins — 4h
7/group 35°C water Pons medulla Sig. { at 15 mins, 2h, 4h
Midbrain Sig. | at 15 mins, 1h, 2h, 4h
Gordonetall'l  s-D Rotating drum: ~ 3and 5h (1 exc group  Brain stem 1 with exc (slight depletion)
Female (160-220g) 7 rpm (high with oMT) L1 with aMT + exc
n =46 (TTL) speed) 1h + tyrosine C* T Radioactivity with exc
T Synthesis of NA
Heyes et al.l®%) S-D Treadmill: RTE or after (6, 11, Striatum ~
Male (350-400g) 36 m/min 16.5 mins) Brainstem } | Progressively during exc
n = 25 (£ 5/group) Hypothalamus
Lukaszyk et al.®®  Wistar rats Treadmill: 20 mins Cortex, striatum  Sig. T
Male (150-220g) 30 m/min Hypothalamus Sig. 4
n = 5/group Midbrain, =
cerebelium

Abbreviations: oMT = a-methyl-p-tyrosine; exc = exercise; h = hour(s); MHPG = 3-methoxy-4-hydroxyphenylethyleneglycol; NA = noradren-
aline; NS = not significant; RTE = run to exhaustion; S-D = Sprague-Dawley rats; sig. = significant; = indicates no significant change;T =
increase; | = decrease; ~ = no significant difference.

brain noradrenaline level 12231 (See table I.)
Whole brain noradrenaline levels increased after
chronic exercise training.[12-25:30-32]

Some studies examined noradrenaline levels in
specific brain regions. Noradrenaline levels de-
creased due to acute exercise in brain stem,[17-33-33]
hippocampus,3%! pons-medulla,’”) midbrain,i*”)
and hypothalamus,33-35:37.38] while noradrenaline
level in the striatum,63%) cortex[38] and preoptic
areal®l increased. Interestingly, hypothalamic

© Adis International Limited. All rights reserved.

noradrenaline levels have been shown to increase
in food-restricted rats.[3] The same study mea-
sured MHPG and found an increase in most brain
regions indicating an activation of noradrenaline
catabolism.

Studies that examined the effects of exercise
training on noradrenaline levels in different brain
regions found mostly an increase or no significant
result.[30:31.3941] Stonel33! examined alterations in
storage of [*H]noradrenaline in hypothalamus of

Sports Med. 20 (3) 1995
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rats during 3 hours of exercise on a motor driven
running wheel. They further compared exercise
with injections of reserpine (inhibition noradrena-
line storage) or o-methyl-p-tyrosine (inhibition
noradrenaline synthesis). Running did not alter
storage of noradrenaline, therefore the authors con-
cluded that it was likely that the noradrenatine de-
pletion during running was derived from newly
synthesised noradrenaline and not from reuptake
mechanisms.?3) One study?3! investigated the ac-
cumulation of dopa as an index of tyrosine hydrox-
ylation activity in order to obtain an indication of
the monoamine synthesis rate. It found higher dopa
levels in the brain stem indicating an increased syn-
thesis of noradrenaline in this predominantly nor-
adrenaline-rich region.[2%]

Only one study reported changes in adrenaline
level following 4 hours of swimming.’”] The
adrenaline levels in hypothalamus, pons-medulla
and midbrain showed a gradually decrease, with a
significant decrease in the second part of the exer-
cise period.[7]

It seems that acute exercise results in a depletion
of brain noradrenaline probably because of an ac-
celeration in noradrenaline turnover by activating
tyrosine hydroxylase activity,!!>! while chronic ex-
ercise has been found to elevate brain noradrena-
line levels. These adaptations are region specific.

2.2 The Dopaminergic System

Dopamine neurons are considered to be critical
components in the motor system.[?! A number of
studies have examined the effect of acute or
chronic exercise on dopamine synthesis and meta-
bolism (table II). Two studies [7-29] used the incor-
poration of ['*C]tyrosine into ['*C]dopamine and
did not find changes in central dopamine synthesis
and turnover. Another early study,?!l however,
found an increase in homovanillic acid level in
mice following swimming and running. Chaouloff
etal.*? also confirmed an increased dopamine me-
tabolism in the whole brain of rats from running.

A number of studies used trained animals to
study the effects of chronic exercise or the effects
of an acute exercise session following training on

© Adis International Limited. All rights reserved.

brain dopamine levels. Whole brain dopamine
level was increased in rats killed 48 hours after an
8-week training period.”>) A 1-week training
model was used to examine brain dopamine meta-
bolism and found that the sum of the levels of
DOPAC and homovanillic acid was increased with
running and remained elevated throughout the first
hour of recovery.[*3] Two studies!!23% did not find
a significant influence of exercise on whole brain
dopamine level of trained rats.

Most studies examined the effects of acute and
chronic exercise on regional dopaminergic sys-
tems. One study!3#! examined the effects of 20 min-
utes of exercise on regional dopamine levels in un-
trained rats and found decreased levels in all brain
regions examined. Swimming for 4 hours in 35°C
water resulted in a small but not significant de-
crease in dopamine level in striatum and mid-
brain.l?”] Other studies found increased dopamine,
DOPAC and homovanillic acid in striatum,[2035]
brainstem! and hypothalamus.9]

In the same region (the hypothalamus) the level
of dopamine and its metabolites was unchanged
although the ratio DOPAC + homovanillic acid to
dopamine increased.[s] These results indicate an
increased dopamine synthesis and metabolism, al-
though in another study,[!”! treatment with o-
methyl-p-tyrosine had no effect on dopamine syn-
thesis in brainstem, and it decreased DOPAC level
in the whole brain in control and exercising rats.[*3!

The fact that dopamine metabolism in rat
striatum is involved in movement has been
shown.?! The data showed that there is a very close
relationship between dopamine production and all
aspects of motor behaviour (speed, direction and
body posture). The dopamine level in the nucleus
accumbens appears to be a marker for the speed of
animals while dopamine level in the caudate is
more related to posture.?!

The effect of training on regional dopamine
level was examined in several studies. In some
studies the animals ran, while others examined re-
gional transmitter levels without an acute training
session. The level of dopamine and its metabolites
was found to increase in hypothalamus,®#!43 mid-

Sports Med. 20 (3) 1995
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brain,!%4344] prefrontal cortex,*¥ hippocam-
pus!*344] and striatum.[%4143] Bailey et al.’] also
found elevated dopamine and DOPAC levels after
1 hour of exercise, however, these increases were
not as great at exhaustion. The hippocampal dopa-
mine levels did not change as a result of exercise.[%)

Another group(?3 used spontaneous, long term
running in a wheel cage. Exercising animals were
killed 1 to 2 hours or 24 hours after the last running
period. By giving the animals NSD (an aromatic
amino acid decarboxylase inhibitor) 30 minutes
before killing the authors measured the accumula-
tion of dopa, an index for monoamine synthesis
rate in different brain regions. The results showed
a decreased rate of dopamine synthesis in dopa-
mine-rich brain regions, while dopa levels were
considerably higher in noradrenaline regions
(brainstem) indicating an increased synthesis of
noradrenaline in this region. All these alterations
were normalised after 24 hours. However, meas-
urement of dopa accumulation does not enable an
evaluation of the in vivo physiological activity of
the monoamine pathways.[?3)

Three studiest?54346] used [*H]spiperone recep-
tor binding to get an indication of transmitter dy-
namics. An operant conditioning model with posi-
tive reinforcement has been used to induce
exercise.[?] Although dopamine levels increased,
they found [*H]spiperone binding to be decreased
in whole brain homogenates. The authors state that
caution must be exercised in interpreting these re-
sults as a change solely in dopamine receptor bind-
ing. A more specific regional determination could
result in different findings. This was confirmed by
Gilliam et al.[*] who showed that animals, exer-
cised on a moderate to high intensity endurance or
interval running protocol, showed significantly
higher [*H]-spiperone receptor binding than sed-
entary controls.

The effects of 6 months of endurance training
on the relationships among steady-state in vivo lev-
els of dopamine and its metabolites and the affinity
and density of striatal-D, receptors were deter-
mined.[*! Endurance training had no effect on
steady-state levels of dopamine or its major meta-

exhaustion; h
run to exhaustion;

1 at 15 mins, 2h, 4h

g.
Sig. | at 15 mins, 1 h, 2h, 4h

Sig. 4 from 15 mins — 4h

TDA
Si
quipazine dimeleate (serotonin agonist); RTE

decrease; ~ = no significant difference.

3,4-dihydroxyphenylacetic acid; exc = exercise; EXH

not significant; QD

Pons-medulla

Hypothalamus
Hypothalamus
Midbrain

dopamine; DOPAC

increase; 1

Speed & run time gradually
indicates no change; T

4 weeks accommodation
increased

3-methoxy-4-hydroxyphenylethyleneglycol; NS

amphetamine; CSF = cerebrospinal fiuid; DA

Swimming: 4h, 35°C water

60 mins, 20 m/min
standard error; sig. = significant; TTL = total;

a-methyl-p-tyrosine; AMPH
serotonin antagonist; NMCPP =5-HTc agonist; MHPG

Sprague-Dawley rats; SEM

12

Male (170-230g)

n
S-D
7/group

Wilson & Marsden®™ Lister hooded rats  Treadmill:
Abbreviations and symbols: oMT
hour(s); LY 53857

Sudo®®”!
S-D
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bolites in striatum. The major finding of this study
was that 6 months of endurance training alters neu-
rochemical markers in the nigrostriatal dopamine
system in young adult rats. Binding of [*H]-
spiperone to D; receptors and the ratio of binding
to levels of DOPAC were enhanced in the runners.
Together these results suggest that a shift in dopa-
mine function may occur as a result of exercise,
either due to altered dopamine release or to changes
in D, binding sites.[*6] However, as has already
been indicated, spiperone will also bind to other
(serotonin) receptor types.3]

It is difficult to draw conclusions from these
studies because there is no uniformity with the
study methods used. Neurotransmitter levels in
whole brain or brain regions are just an indication
of the amount neurotransmitter, and give us no in-
formation concerning neuronal activity. Receptor
binding studies used are not specific to one recep-
tor type.

The dopaminergic nerve terminals appear to
play an important role in the regulation of locomo-
tor activity’l and it seems that the influence of
acute or chronic exercise is region specific. How-
ever, it should be recognised that the so called ‘mo-
tor circuit’ containing neurons from the striatum,
substantia nigra, cerebral cortex and thalamus, in-
teract constantly through several transmitters and
receptor types.[*8] It is difficult, if not impossible,
to register this dynamic and constant interaction
with brain homogenate preparations.

2.3 The Serotonergic System

A number of studies have examined brain sero-
tonin and 5-HIAA levels with acute and chronic
exercise (table III). Chaouloff and his co-workers
have published several papers on this
topic.[154243:49-521 Bxcept for one study[?®] that
found no change in serotonin level, whole brain
serotonin and 5-HIAA increase following an acute
bout of exercise.[!216:53] However, in trained rats it
seems that brain serotonin level is unaltered while
5-HIAA level increases. The first studies by
Chalouff et al.[*2%9] showed that exercise increased
brain and cerebrospinal fluid tryptophan and 5-

© Adis International Limited. All rights reserved.

HIAA, indicating an increase in serotonin synthe-
sis and metabolism. The same authors®!! did not
find a difference in basal brain serotonin levels be-
tween short and long term trained rats. A single
running session did not change serotonin level in
the rats trained for 1 week, but serotonin was di-
minished in rats trained for 8 weeks, probably in-
dicating a different serotonin utilisation.[>!]

Acute and chronic exercise studies have found
both increased and decreased levels and turnover
of serotonin and 5-HIAA, depending on the brain
region of interest. Striatal, hippocampal and mid-
brain serotonin and 5-HIAA levels increased after
a training session, or after an acute bout of exercise
in trained rats.[9-31,39.44.52,54]

Dey et al.[?¢] studied serotonin and 5-HIAA al-
terations in different brain regions following acute
(1 hour swim) and chronic exercise (4 weeks of
swimming, 6 days/week). Acute exercise signifi-
cantly increased the synthesis and metabolism of
serotonin in the brain stem and hypothalamus, and
there were no changes in cerebral cortex and hip-
pocampus. Chronic exercise activated not only the
synthesis but also the metabolism of serotonin in
cerebral cortex. One week after the termination of
training this neuronal adaptation was still present.
In brain stem, serotonin turnover increased imme-
diately after the training session. In hippocampus
a delayed effect was observed, because serotonin
level was unaltered immediately after the training,
but its turnover decreased after 1 week of rest. In
hypothalamus serotonin and 5-HIAA decreased
immediately after training, followed by a rebound
increase in their levels after 1 week of post-training
rest.l26]

Two studies!?3?* used a spontaneous wheel run-
ning model (to avoid other stressors such as foot-
shock) to examine changes in serotonin metabo-
lism and turnover. An aromatic amino acid
decarboxylase (AADC) inhibitor was used to mea-
sure 5-HTP (the direct precursor of serotonin) ac-
cumulation, which can give an estimate of seroto-
nin synthesis.[?3) There were no statistically
significant differences in 5-HTP. Chalouff et al.l>?]
however, found regional differences in tryptophan

Sports Med. 20 (3) 1995
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e utilisation into the serotonin synthesis pathway.
al2 5% Physical exercise differentially affected serotonin
55 © 5 . . .
T 88, RE: synthesis and metabolism in midbrain (cell bodies)
== I 9 . .
§ ood &g and hippocampus and striatum (terminals). Run-
F Z2Za 0 1 153 . . R
%% ning increased 5-HTP accumulation (after AADC
a0 §§ inhibitor) in midbrain and decreased this accumu-
QO 3 . . . . . .
e 89 %% lation in hippocampus while it was unaltered in
< e 22 o £ 2 .
2 8583 2 striatum.
T8 o0 & <5 o
v e Ezad £ These results indicate that under some pharma-
==
=55 cological conditions running causes region-spe-
[ s
55 LS cific alterations in the conversion of tryptophan
v 98 o . . .
2 =% ¢ W into the serotonin synthesis pathway. If one con-
[ E=4 . . . .
F 22000 3 %E siders that 5-HTP accumulation is a good index for
= s o . . .
a 28 serotonin synthesis, the authors hypothesise that
£ I b . g e e s . 5
5 g8 » 32 this serotonin synthesis is increased in the mid-
° [ . . .
3 £F:&s 5 Ta brain and decreased in the hippocampus and unal-
o S € o ) . oLG
£ 38355 L% i tered in striatum of the exercising rat. Although the
© = . .
< ¢ ¢ zzra = ] measurement of 5S-HTP provides an estimate of the
St . . . . .
- w2 in vivo synthesis rates of brain monoamines, it does
= g g g g . .
c8 GRS not enable an evaluation of the in vivo physiologi-
® ° @ . . .
E % g cal activity of the monoamine pathways.[23]
%2 8L i
Ly W The other group that used spontaneous running
g% oz . . L
c c8 2 % 8 g8 animals, killed their animals 1 to 2 hours, 23 to 24
s s 8¢ €58 ..
e <3 BeST 25 §3¢ hours, or 47 to 48 hours, after the last training ses-
- 5] Q=cT 5§ ®© . . .
£ §§§§§1§ £%§ 85 sion.?" The serotonin and 5-HIAA levels in the
-0 = . . . . .
Ta 8 limbic forebrain and brain stem decreased in the
B T8 . g 9 . D
JE 3 =3 immediate post exercise period. A decrease in the
-0 WE e . . .
387 Eél tissue serotonin (as described by these authors)
=0 3 o =4 . 5 5 . g
58 ,3;§ gé g may thus indirectly suggest a relative increase in
>HiE & ZE§ . L
£ES ESES» gé% the release of serotonin.[?*] However, alterations in
QAL Em e . . . .
88E8cg 2° % %5 tissue levels of transmitters or their metabolites are
ERE g 9
i o 525 crude measures of activity, which do not necessar-
5 £ =y 4 . . . .
é LgE ESXP £ e ily reflect corresponding changes in synaptic re-
3% ©=L5s = S 5 S c 5 .
] op.m2g fsesE SE lease. Recent microdialysis studies confirm the in-
-. Z 5 5¢ G2 ERe] g S = L ey y
EE EESey PrelSic T £5% creased serotonin release during exercise.[35:56.57]
SE 28558 Efge.? £ 228 L :
Ex §52ES ScEEEG 8 EES Again it is difficult to draw conclusions from
Y FowEX CacEdan Sd3%° ) . i :
5 5 ze8 g3 the studies that examined the influence of exercise
—_—a o c s . . . . .
g8 ¥ ° §CESS on brain serotonin because there is no uniformity
o 3 <3 =9 . . . o 3
§§§ g%g ) 5%_; §58 in study designs, exercise protocols, brain regions
- el 508 588wl of interest and measuring methods. Even the
s2c sfe 53¢ 8858 strains of animals used are different.
vE s & Q
. . B g g §g g We agree with Dunn and Dishmann!!3) who, in
% © 'ﬂ:_" 23 §%§ their review on exercise and the neurobiology of
L) < T = . . .
é.@ %_ 3 8 §§ °Z depression, point out some weak points of these
a 3 g : . . . 0
&8 2% @ soa2% studies.[1358] Briefly, most studies examined whole
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brain neurotransmitter levels or have not assessed
the same brain regions. The first studies used fluo-
rescence spectrometry to determine transmitter
levels, while later studies used more sensitive
methods such as high performance liquid chroma-
tography (HPLC) which allow measurement of
multiple neurotransmitters and metabolites within
the same sample.['3! The discrepancies in measur-
ing methods or statistical analysis prevents direct
comparisons of results. For example, in the study
of Blomstrand et al.l*¥] dopamine level increased
65% in brainstem after exercise in trained rats.
However, due to the large inter-individual variabil-
ity of the responses, the authors could not reach
statistical significance.[3%

Most studies used forced locomotion on
a treadmil] [2:9.12.26.29,31,34,35,38,39,41-46,49.51-54,56] 1y
ning  wheel1617:192025303359]  gpontaneous  run-
ning, 21232436401 or swimming.[16:18:21,2832.37) Many
studies used other stressors in addition to running
or swimming. Swimming in water of different tem-
peratures or the fear of drowning, or foot-shock
during running could influence results.[!3! Animals
that were tested after a single exercise session ran
at different speeds. The chronic exercise protocols
mostly used an accommodation period in which
running speed and run time gradually increased,
but these protocols varied from study to study.
Only a few studies examined the effects of their
training programme on endurance capacity or fit-
ness level of the animals.

Measuring neurotransmitter levels in homoge-
nates makes no distinction between extracellular
and intracellular levels, and gives no indication of
neurotransmitter release. Finally, measurement of
single neurotransmitter levels does not provide
much information on the relationships between
neurotransmitters.

2.4 Neurotransmitter Interactions

Although it is difficult to compare the above
mentioned studies, it seems that physical exercise
influences the synthesis and metabolism of mono-
amines in various brain regions. There is evidence
from recent microdialysis studies!8:60-631 that there

© Adis Infernational Limited. All rights reserved.

is a reciprocal influence of various neurotransmit-
ters in regulating their release. The various studies
that examined the influence of exercise on brain
neurotransmitters indicate that both central dopa-
minergic and serotonergic activity are influenced
by exercise. Chaouloff et al.[** examined whether
compounds known to affect dopamine activity in
brain could modify the serotonin response in brain
during exercise. The dopamine metabolism was in-
creased in serotonin-rich regions.[*3] Administra-
tion of amphetamine, while increasing levels of
tryptophan in brain, diminished the formation of
5-HIAA (ratio 5-HIAA to tryptophan). The relative
inhibition of synthesis of serotonin induced by run-
ning, was thus potentiated by administration of am-
phetamine while o-methyl-p-tyrosine (inhibitor of
catecholamine synthesis) prevented this effect of
exercise, and haloperidol (dopamine antagonist)
did not produce any significant change.

This possible interaction between brain seroto-
nin and dopamine during exercise, was also pro-
posed by Bailey et al.[?4434] who examined the ef-
fects of increased serotonin activity on endurance
performance and brain dopamine and serotonin
turnover. They used several serotonin agonists and
antagonists to examine run time to exhaustion and
brain serotonin and dopamine levels. They found
increased dopamine and DOPAC levels with run-
ning. At exhaustion, however, the dopamine and
DOPAC levels were consistently lower than after
1 hour of exercise. Increased dopamine and
DOPAC levels were significantly attenuated by m-
chlorophenylpiperazine administration (mCPP is a
5-HT)c agonist), indicating a possible impaired
brain dopamine synthesis. When a general seroto-
nin agonist (quipazine dimaleate) was adminis-
tered, brain dopamine level significantly decreased
at exhaustion in midbrain, and slightly decreased
in striatum, hypothalamus and hippocampus.
DOPAC significantly increased at exhaustion in
hypothalamus and remained unchanged during ex-
ercise in the other brain regions. Administration of
LY53857 (5-HT,¢/5-HT, antagonist) increased do-
pamine and DOPAC level during exercise in mid-
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brain, striatum and hypothalamus, while it was un-
changed in hippocampus.

It is possible that the interaction between brain
serotonin and dopamine during prolonged exercise
could play a regulative role in the onset of fa-
tigue.[®) However, it seems that this interaction
could be region specific and that neuroendocrine
factors also play an important role as several au-
thors already demonstrated.[%!13.64]

Future studies need to examine the region spe-
cific interactions between multiple neurotransmit-
ters (including excitatory and inhibitory amino
acid transmitters) during exercise, and the impor-
tance of various receptors, since single neurotrans-
mitters can have both inhibitory and excitatory ef-
fects.[13]

3. Neurofransmission and Exercise
Performance

3.1 Tryptophan, Branched Chain Amino
Acids and Neurotransmission

The variability of neurotransmitter release is
regulated by a number of processes.l%] One of
these presynaptic processes which modulates
neurotransmission is the change in neurotransmit-
ter synthesis resulting from the metabolic conse-
quences of eating or exercise.[%5] The biosynthesis
of serotonin is tightly controlled by the activity of
its rate-limiting enzyme tryptophan hydroxylase,
so increases or decreases in its substrate, trypto-
phan, trigger increases or decreases in serotonin
synthesis and metabolism.[64! Tryptophan and the
large neutral amino acids, including the branched
chain amino acids (BCAAs) [valine, leucine, iso-
leucine] use the same carrier to enter the brain, and
therefore are competitors for transport over the
blood brain barrier. The blood level of free trypto-
phan or the ratio of free tryptophan to other large
neutral amino acids is an important parameter for
this competition,[66-68]

Levels of circulating total and free tryptophan
in plasma, and the ratio of free tryptophan to other
large neutral amino acids, depends on several fac-
tors, e.g. the rate of lipolysis, the activity of hepatic
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tryptophan pyrrolase, the uptake into the periph-
eral and central tissues.[64] As free fatty acid levels
increase during endurance exercise, the amount of
tryptophan bound to albumin is reduced, increas-
ing the level of free tryptophan in the blood. Other
factors such as a high carbohydrate meal,'®”) insu-
lin administration,!%8! administration of L-trypto-
phan,’® or a combination of these factors will in-
crease the level of free tryptophan in plasma.[’%

Since brain serotonin synthesis depends on the
plasma level of tryptophan, treatments that elevate
plasma tryptophan will promote accelerated sero-
tonin synthesis and/or metabolism.[!>] Changes in
neurotransmission caused by eating and by exer-
cise can thus affect all of the behavioural and phys-
iological functions that precursor-dependent neu-
rons happen to subserve.[6%] Table IV summarises
the studies that used precursor loading and/or phar-
macological manipulation to influence exercise
performance in human or animal models.

Serotonin has been shown to induce sleep, de-
press motor neuron excitability, influence auto-
nomic and endocrine function and suppress appe-
tite.[10-1271 This led several authors to propose the
‘central fatigue hypothesis’.[1%-12] In order to ex-
amine this hypothesis Blomstrand et al.l!1.72.73]
performed several studies. First, the changes in
plasma levels of amino acids were examined dur-
ing a marathon run and an army training pro-
gramme.!!!) Both types of exercise caused a signif-
icant decrease in plasma level of BCAAs. The
plasma level of free tryptophan was found to in-
crease significantly during the race.

In two studies the effects of administration of
BCAAs on mental and physical performance were
examined.[7>73] In one study mental performance
in 6 female soccer players was studied.[”3] The
study participants were given carbohydrate drinks
with or without BCAAs. Plasma BCAAs were sig-
nificantly decreased and plasma free tryptophan
was significantly increased with the placebo car-
bohydrate drink. When ingesting the carbohydrate
plus BCAA drink, amino acid levels were signifi-
cantly increased and plasma free tryptophan was
not significantly elevated. Mental performance
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was significantly improved after the soccer match
with the players that ingested the BCAAs, whereas
mental performance was unchanged in all catego-
ries in the placebo carbohydrate drink group.[’3]
The authors concluded that an intake of BCAAs in
addition to a standard carbohydrate drink during
exercise appears to affect mental alertness during
and/or after exercise.(73]

A similar experiment(’?! studied the effects of
BCAA supplementation on endurance perfor-
mance and psychological responses to a 30km and
a marathon run. In the 30km trial, valine, leucine
and isoleucine were significantly decreased in the
placebo trial whereas BCAA supplementation re-
sulted in a significant increase in these amino
acids. In this study free tryptophan was not mea-
sured but the authors concluded that the increased
availability of BCAAs would serve to maintain the
free tryptophan/BCAA ratio at a lower level. Mar-
athon run performance times were not significantly
different when the placebo and BCAA group were
compared. In order to get statistically significant
differences the authors subdivided the group into
faster (<3.05 hours) and slower runners (between
3.05 and 3.30 hours). They did not provide a ratio-
nale as to why this cut-off time was chosen nor
whether a similar trend would have been observed
if other times had been selected.["!]

Nutritional status was either not reported or
controlled and only a subset of runners was as-
sessed for plasma amino acid levels. Although
BCAA supplementation improved mental perfor-
mance after the soccer match and 30km run, the
runners ingesting the placebo did not experience a
decreased psychological status in comparison with
pre-event mental performance. Consequently as
performance was not evaluated during the soccer
match or 30km run, there is no evidence to suggest
that the increased mental performance after these
events influenced performance capacity during the
events.[71]

The above studies used field experiments (soc-
cer match, marathon run) that are difficult to con-
trol because of the variations in environmental
and/or race conditions, which may affect physio-
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logical responses to exercise and performance ca-
pacity.

Several other animal and human studies have
examined this tryptophan- and serotonin-linked
central fatigue hypothesis and the subsequent pe-
ripheral and central effects of endurance exer-
cise.l’#821 Davis et al.[”3 investigated the effects of
carbohydrate feedings during prolonged exercise
to fatigue on changes in plasma BCAAs, lactate,
free fatty acids, insulin. These parameters could be
important regulators of plasma tryptophan trans-
port into the brain. The major finding of this study
was that levels of plasma free tryptophan and free
tryptophan/BCAAs and free fatty acids increased
progressively during prolonged exercise until fa-
tigue, while plasma BCAAs remained unchanged
in the placebo group and decreased in the carbohy-
drate group. The changes in plasma free trypto-
phan, free tryptophan/BCAAs and free fatty acids
were attenuated in a dose-dependent manner and
fatigue was delayed when subjects consumed car-
bohydrate drinks.

Gailano et al.’7] concluded that addition of
small quantities of BCAAs to a typical sport drink
may serve to maintain plasma BCAA levels
throughout prolonged exercise, but does not appear
to have any effect on psychological, endocrine, or
performance responses during prolonged cycling.
One study found that the supplementation of
BCAAs suppressed the protein degradation during
knee extension exercises for 60 minutes.[8%]

During exercise plasma levels of free trypto-
phan increase and it is proposed that this could be
‘balanced’ by raising the plasma level of BCAAs.
Thus, according to the Newsholme hypothesis,
supplementation with BCA As will improve perfor-
mance, while supplementation with tryptophan
will have the opposite effect. This hypothesis was
tested by several authors(7-81:82] and the resuits in-
dicate that oral supplementation with BCAAs or
tryptophan significantly increases the plasma level
of BCAAs. Neither time to exhaustion during cy-
cling at 70 to 75% maximum oxygen uptake
(VOomax),#Y nor performance during 100km cy-
cling in well-trained cyclists(?] differed. So, nei-
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ther a positive effect of BCAA supplementation,
nor a negative effect of tryptophan supplementa-
tion on performance was found.

Van Hall et al.18!l investigated whether ingestion
of tryptophan or BCAAs could influence perfor-
mance. They calculated the transport of tryptophan
(free or bound) into the brain during prolonged
exhaustive exercise and found that the effect of
BCAAs and tryptophan ingestion seems to be
independent of whether total or free tryptophan is
considered available for transport.B!l It was con-
cluded that manipulation of tryptophan supply to
the brain either has no additional effect upon
serotonergic activity during prolonged exercise
or that manipulation of serotonergic activity
functionally does not contribute to mechanisms of
fatigue.[811

Verger et al.[78} examined the effects of admin-
istration of BCAAs versus glucose or water during
acute exercise in the rat. They measured exercise
time, blood insulin and glucose levels at exhaus-
tion in the animals. The results showed that follow-
ing ingestion of BCAA physical performance was
lower and blood glucose levels between groups did
not differ, while blood insulin level at exhaustion
was higher with BCAAs than after glucose admin-
istration.[78 It would have been interesting to have
measured plasma free fatty acid level in this study
and link this with the other parameters in order to
get a more complete image of insulin, glucose,
BCAAs and free fatty acid levels.

The decreases in BCAAs during prolonged ex-
ercise, as seen in the Blomstrand et al. stud-
ies, (1172731 could also be the consequence of ele-
vated plasma insulin levels. As previously
mentioned, fluid intake was not totally controlled
in these field studies, therefore it is likely that the
study participants consumed carbohydrate-con-
taining drinks. The effects of the above mentioned
peripheral parameters and the link with insulin lev-
els need further investigation since several studies
have shown that not only insulin,[®583] but also
amylin,[84] facilitates brain tryptophan uptake and
monoamine metabolism.[35-87]
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Taken together these studies indicate that fa-
tigue can be delayed by ingesting carbohy-
drates,[7®) which are an important energy source for
muscle and brain function,!®8! and that until today
there is little evidence to support the hypothesis
that BCAA supplementation will increase perfor-
mance.

3.2 Precursor Loading, Pharmacological
Manipulation and Neurofransmission

The possibility of a centrally mediated fatigue
during exercise was discussed by Romanovski and
Gabriec3! in the mid-1970s. They linked seroto-
nin to a possible inhibition of brain oxidoreductive
processes, while others(!3343543] pointed out the
role of dopamine in the onset of central fatigue.
This brings us back to the possible interaction be-
tween neurotransmitters and their mutual influence
on exercise performance. This was investigated by
several authors who used precursor loading and/or
pharmacological manipulation on exercise perfor-
mance in animals and humans.

The effects of tryptophan supplementation on
human performance were examined!’#! and it was
hypothesised that administration of tryptophan be-
fore exercise could contribute to a decreased sense
of discomfort and pain associated with prolonged
exercise. During a treadmill test at 80% VOsmax,
the total exercise time to exhaustion increased by
49% in the tryptophan group, but this increase
could have been confounded by a spectacular im-
provement in 2 of the § participants (160 and 260%
increase in running time). This study was criticised
by Chaouloff® and Stensrund et al.,!”>] who per-
formed a similar study and found no differences
between tryptophan and placebo groups.

Two studies®®*°!] examined the effect of a sero-
tonin reuptake inhibitor on time to exhaustion in
humans. Both found a decrease in exercise time to
exhaustion with the reuptake inhibitor compared to
placebo. There were no differences in plasma glu-
cose or lactate between both groups indicating the
possible role of the central serotonergic systems in
fatigue in people. De Meirleir® examined the in-
fluence of a dopamine agonist (pergolide) and a
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serotonin antagonist (ketanserin) on exercise per-
formance. The results showed that oral treatment
with the serotonin (5-HTc/5-HT>) antagonist had
no influence on exercise performance. It did not
alter heart rate at rest or during exercise, but it elic-
ited a shift to the right of the lactic acid curve.!%2!
The dopamine agonist (D,/D;) lowered heart rate,
systolic blood pressure and enhanced maximal
work capacity.[9293]

Chaouloff et al.[4243:49-52] conducted a number
of studies on the effects of tryptophan loading
and/or exercise on central serotonin synthesis and
metabolism. Under some pharmacological condi-
tions running caused region-specific alterations in

“the conversion of tryptophan into the serotonin

synthesis pathway.

The role of serotonin in the regulation of motor
mechanisms is complex. Thus, a depletion of brain
and spinal serotonin, as well as an increase in the
availability of central serotonin, can result in a de-
crease or an increase in motor activity depending
on the experimental model used.[®4]

There are numerous levels at which central se-
rotonin can affect motor behaviour, from sensory
perception, sensory-motor integration to motor ef-
fector mechanisms. For reviews of the involve-
ment of serotonin in the initiation or modulation of
motor patterns, neuromuscular function and motor
control, see Jacobs and Fornal,!®! Jacobs,!”! and
Wallis.%31 Jacobs and Eubanks!®®) measured the ef-
fects of serotonin and 5-HTP injections on motor
activity and found it to decrease in a dose-depend-
ent manner, with serotonin being a more potent
inhibitor than 5-HTP. They attributed these
behavioural changes to peripheral effects of sero-
tonin. These results were not confirmed by Wil-
ckens et al.,’) who did not find any effect of sero-
tonin administration on running wheel activity.

Another group® investigated the effects of
systemically administered 8-OH-DPAT (a seroto-
nin agonist with preference for the 5-HT 5 binding
site) on motor activity in open-field locomotion,
and on treadmill running in rats. The spontaneous
locomotor activity and rearing (vertical activity)
were dose-dependently decreased by the adminis-
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tration of the 5-HT 4 agonist. There were no statis-
tically significant effects by 8-OH-DPAT on tread-
mill locomotion, i.e. the motor coordination was
intact.®¥

Chaouloffl!!”] examined whether a short exer-
cise training programme (4 days) could influence
5-HT A receptor-mediated behaviours. The effects
of 8-OH-DPAT administration were not affected by
training or acute exercise.l!'’”] It should be men-
tioned that the administration of 8-OH-DPAT and
other drugs including precursors, agonists and re-
leasers, produces various signs of the so-called ‘se-
rotonin syndrome’.[’] This syndrome is charac-
terised by hyperactivity, head shakes or ‘wet dog’
shakes, hyper-reactivity, tremor, rigidity, hind-
limb abduction, Straub tail, lateral head weaving
and reciprocal forepaw treading. These behaviou-
ral signs are sometimes used as an indication for
central serotonin activity.[]

Wilckens et al.l®! found with the same agonist
(8-OH-DPAT) that locomotion increased during
the first and second hour at the lowest dose and that
at the higher doses locomotion was inhibited. This
suppressed locomotion at higher doses could be a
consequence of a behavioural impairment resulting
from the ‘serotonin syndrome’.3} They further
evaluated the effects of serotonin receptor agonists
and antagonists with selectivity for various seroto-
nin receptor subtypes on running wheel activity in
the rat model for semi-starvation-induced hyperac-
tivity, where running wheel activity was stabilised
for 10 weeks at a high level of circa 20 to 25
km/day. The results showed that excessive running
in the semi-starved rat is suppressed by activation
of the 5-HT¢ receptors and that activation of pre-
synaptic 5-HT g receptors resulted in a decreased
serotonin release. %]

These results were confirmed by Bailey et al.[*4]
who found a decreased run time to exhaustion in
a dose-response manner in animals treated
with mCPP (5-HT )¢ agonist). Other studies!97:%8]
also suggested that hypolocomotion induced by
mCPP could be mediated via postsynaptic 5-HT¢
receptors.

© Adis International Limited. All rights reserved.

That 5-HT,¢ receptors play a major role in the
development of compulsive running is supported
by the fact that the effect of the 5-HT)c receptor
agonists on wheel running in rats could only be
counteracted by serotonin antagonists which have
high affinity for the 5-HT,¢ receptor (metergoline
and mianserin).B! The inhibitory effect of the ago-
nists on running wheel activity was prevented by
pretreatment with antagonists that also had high
affinity for the 5-HT1C receptors.[?! Bailey et
al.19>% examined the effects of quipazine dimaleate
(QD), a general serotonin agonist with high affinity
for the 5-HT3 receptor®! and 1.Y53857, a serotonin
antagonist specific to 5-HT;¢ and 5-HT, receptors.
Run time to exhaustion was reduced in a dose-
dependent manner by increasing dosages of
quipazine dimaleate, while the time to exhaustion
was increased with LY53857 administration but
only at the highest dose.* The results further in-
dicated that QD appeared to block the increase in
dopamine and DOPAC after 1 hour of exercise and
LY53857 prevented the decrease in dopamine and
DOPAC at fatigue,l®! indicating the importance of
the interaction between brain serotonin and dopa-
mine in the onset of fatigue.

Pretreatment of exercising rats with amphet-
amine,®®! a dopamine releaser, or apomorfinel** (a
dopamine agonist), extends the time to exhaustion.
Heyes et al.’* used the 6-hydroxydopamine (6-
OHDA) model to induce a dopamine lesion and
found these animals to have significant shorter run
times to exhaustion. When apomorfine was given
to 6-OHDA lesioned rats, their run time increased
compared with saline-administered lesioned rats.
Clonidine (noradrenaline receptor agonist) given
to these animals had no effect.

These studies indicated that central dopamine
depletion hastens time to exhaustion, while in-
creasing central dopaminergic activity prolongs
time to exhaustion.’?¥ In a follow-up study the
same authors®3) found an increase in both dopa-
mine synthesis and release with exercise. Striatal
dopamine depletion had no effect on the rats ability
to run during the first 40% of an exhaustion run,
but accelerated the deterioration in exercise perfor-
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mance during the remaining 60% of the run and
hastened exhaustion.

The results of these studies*33) suggest that the
time to exhaustion is influenced by the activity of
nigrostriatal dopaminergic neurons. During the
later phase of the run to exhaustion there is proba-
bly a need to increase striatal dopaminergic activ-
ity. If this is the case, dopaminergic agonists may
improve exercise capacity by facilitating such re-
cruitment.33 On the other hand, these authors state
that dopamine accumulation in the striatum late in
exercise as found in their studies,333 may reflect
decreases in dopamine release, perhaps due to ac-
tivation of dopamine autoreceptors.[33]

A low dose of haloperidol (dopamine antago-
nist) disrupts the treadmill performancel!% and
Chaouloff et al.[**] reported that when haloperidol
was administered at the beginning of exercise the
animals were unable to run. The injection of halo-
peridol at the end of exercise caused a large in-
crease in DOPAC in the brains of controls and run-
ners.[43]

The results from these studies emphasise the
importance of dopamine and serotonin (and prob-
ably other neurotransmitter) interactions during
exercise. Central 5-HT; receptors might be in-
volved in the observed behaviour because they in-
teract with the dopaminergic neurotransmitter sys-
tem.3) LY53857 is a potent and selective 5-HT,
receptor antagonist, but has also affinity for o,-
receptors, therefore at the highest dose can interact
with catecholaminergic receptors!!® since
Wilckens et al.l¥] found that propanolol increased
motor activity in the rats, which could arise from
the action of this serotonin antagonist (5-HT s p.c)
on B-adrenoceptors.

Taken together, these results indicate a role for
several dopamine and serotonin transmitter recep-
tors in motor control and the so-called ‘central fa-
tigue’, but as Bailey and Davis[!92] pointed out: any
possible role of serotonin, dopamine (and other
transmitters) in motor function should be per-
ceived as a continuum. This continuum is not only
important at the brain level, but has its own impor-
tance in the interaction between central neurotrans-

© Adis Infernational Limited. All rights reserved.

mission and the peripheral processes during exer-
cise, including the neuro-endocrine system, espe-
cially the activity of the hypothalamic-pituitary-
adrenal (HPA) axis. Neurotransmitter systems not
only influence each other, but they also are inti-
mately linked to the HPA axis.[13-38.641 We will not
include an overview of the interactions between
stress hormones and central neurotransmitter sys-
tems, for a review on serotonin and stress hor-
mones see the excellent review of Chaouloff.(64]

4. Measurement of Extracellular
Neurotransmitter Levels

The review of the literature demonstrates that
serotonergic, noradrenergic and dopaminergic
neuronal systems are influenced in different ways
during exercise. However, most of the studies were
post mortem experiments which used indirect
measurements such as the ratio of neurotransmitter
to metabolites, or precursor to neurotransmitter to
predict neurotransmitter release during exercise.
Changes in the brain content of monoamine trans-
mitters with tissue assay are now regarded as a
rather inaccurate method to estimate changes in the
release rate of these transmitters.l'9] Recently,
new techniques such as microdialysis!!94-106] and
voltammetry!193.107] were introduced to measure in
vivo release of neurotransmitters (see table V).

The voltammetry method is based on the appli-
cation of a potential to an electrode in a conducting
solution.[193] The electrodes are implanted in the
brain and an oxidation current is generated as mol-
ecules in the extracellular fluid are oxidised at the
electrode surface.[103]

Microdialysis is a means of assessing alter-
ations in neurotransmitter release in brain extracel-
lular space. It can collect virtually any substance
from the brains of freely moving animals with a
limited amount of tissue trauma.[!%] This method
allows the measurement of local neurotransmitter
release in combination with on-going behavioural
changes such as exercise. A number of microdialy-
sis studies have documented changes in extracel-
lular neurotransmitters in several brain areas dur-

Sports Med. 20 (3) 1995
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Fig. 3. The effects of 20 minutes of exercise on extracellular monoamine levels in rat striatum (after Meeusen et al. 19941551 with
permission). Compared to baseline values, the brain monoamine release increased during 20 minutes of exercise. Maximal extra-
cellular levels were obtained 20 minutes post-run for dopamine, while noradrenaline (norepinephrine) and serotonin (5-hydroxytrypt-
amine; 5-HT) values peaked during running. After this increase extracellular levels of the neurotransmitters remained above baseline
for at least 60 to 80 minutes, while serotonin remained elevated up to 120 minutes after the exercise was stopped. Abbreviations:

DA = dopamine; NA = noradrenaline (norepinephrine).

ing exposure of the animals to different stim-
uli.[47.108,109]

Recently, the first reports appeared, demonstrat-
ing that it is possible to measure extracellular lev-
els of neurotransmitters with microdialysis in the
rat brain during exercise and recovery from exer-
cise.[33:36.110.HLU4 Two gtudiest> 112! found that
20 minutes of exercise on a treadmill, significantly
increased dopamine release in rat striatum. Hattori
et al.[!'?] combined microdialysis with running in
order to evaluate motor deficit and improvement
following dopaminergic grafts in 6-OHDA
lesioned rats. Dopamine, DOPAC and homovanil-
lic acid significantly increased during the treadmill
exercise in their control animals.!!1?]

In another study a circular treadmill (speed of
the treadmill circa 10 m/min) was used in order to
let the animals turn and ‘walk in place’ for sucrose
water reward.[!13) The rats were fixed by their tails
and walked in place for 24 minutes. Extracellular

© Adis Infernational Limited. All rights reserved.

levels of dopamine and DOPAC were measured in
the nucleus accumbens/medial striatum and lateral
striatum. An increase in dopamine, and DOPAC
release in the lateral striatum was found. The au-
thors were unable to conclude whether these
changes were due to motor activity, the act of
drinking, the tail pinch stress or the amount of fluid
consumed.

Another study registered the simultaneous re-
lease of monoamines in rat striatum, during and
following exercise, and found a significant in-
crease of these neurotransmitters (fig. 3).55 In a
similar experiment!!!4] it was demonstrated that a
light exercise regimen is able to significantly in-
crease extracellular levels of glutamate (GLU),
while y-aminobutyric acid (GABA) remains un-
changed (fig. 4). These results could indicate the
existence of a functional interaction of several
brain neurotransmitters in the regulation of loco-
motion.

Sports Med. 20 (3) 1995
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Fig. 4. The effects of 20 minutes of exercise on extracellular y-aminobutyric acid (GABA) and glutamate (GLU) levels in rat striatum.[114]
Compared to baseline, GLU levels increased significantly during exercise, and remained significantly elevated during the following

20 minutes. GABA levels showed no significant increase.

Kurosawa et al.’7! used a treadmill that was ma-
nipulated manually at alow speed (2.3 m/min). The
animals were restrained in a metal harness which
was fixed to the rat’s chest and abdomen with plas-
ter. Extracellular acetylcholine (ACh), noradrena-
line and serotonin in the parietal lobe of the cere-
bral cortex was examined. Walking for 5 minutes
produced an increase of all 3 neurotransmitters.

Treadmill running for 60 minutes significantly
increased extracellular serotonin level in the hippo-
campus of trained rats.[6] Pagliari et al.''!] exam-
ined the effect of exercise on the in vivo cerebral
release and turnover of noradrenaline in trained
rats running on a treadmill for 60 minutes. The au-
thors used a chronic probe implantation in the fron-
tal cortex. Noradrenaline turnover and release in-
creased during exercise and even further increased
when exercise time was prolonged to 2 hours of
running.

Gerin et al.''3) used an interesting approach. To
investigate the effects of exercise on spinal cord
serotonin, these authors chronically implanted a
microdialysis probe in the ventral horn of the lum-

© Adis International Limited. All rights reserved.

bar spinal cord of rats. The probe was kept in place
during 40 days. Extracellular release of serotonin
did not increase during 60 minutes of exercise.

Two studiest?2116l ysed in vivo voltammetry.
Bertolucci-D’ Angio et al.[??] studied the dopamine
metabolism in different brain regions and com-
pared forced locomotion with several other
stressors. Forced locomotion of rats on a rotarod
for 40 minutes increased the amplitude of the
DOPAC oxidation peak in the striatum and the nu-
cleus accumbens, but failed to affect the DOPAC
peak in the prefrontal cortex. This increase in the
striatum and nucleus accumbens is compatible
with the currently held view that the nigrostriatal
dopaminergic neurons are associated with motor
function.[?2]

In addition to these results Guadeloupe et al.l116]
investigated the effects of forced locomotion and
spontaneous locomotion on dopamine and DOPAC
in the nucleus accumbens. They found that contin-
uous and intermittent locomotion increased the
levels of dopamine and its metabolite indicating
the involvement of the nucleus accumbens in the

Sports Med. 20 (3) 1995
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initiation but not the maintenance of move-
ment.[116)

The recently developed and more sophisticated
in vivo methods such as microdialysis and in vivo
voltammetry will improve our insight into the re-
lationship between the monoamine and other trans-
mitters during on-going behaviour such as exer-
cise. These methods will allow us to monitor
extracellular release and metabolism of various
neurotransmitters. However, the few studies that
have been published up till now, already show the
same discrepancies as in the post mortem studies.
They used different exercise models, for example,
with or without extra stress (electrical grid at the
end of the treadmill, restraint in a harness), other
running speeds and training regimens. We there-
fore hope that in the future these precise collection
methods, will be used in well-defined experimen-
tal protocols in order to being able to compare the
different results.

5. Conclusions

There is consensus that monoaminergic neurons
are involved in a number of functions that regulate
locomotion. Although most studies used different
experimental protocols, it can be concluded that
brain neurotransmission is influenced by exercise.
The effects of exercise on neurotransmission
should be explored in a multidimensional way be-
cause there is a constant interaction between sev-
eral neurotransmitters and their respective recep-
tors during locomotion.

Many neurotransmitters or neuromodulators in-
fluence an individual’s ability to exercise via ac-
tions in both the peripheral and central nervous
system. The intracerebral mechanisms responsible
for the central fatigue phenomenon have not been
fully identified. Animal and human studies will
help us to find out the effects of various pharma-
cological manipulations on central fatigue.

1t would be of interest to study whether the dif-
ferent neurotransmitter interactions can influence
‘central fatigue’ during exercise. We need to de-
velop standard experimental strategies in order to
examine the effects of exercise on brain functions.

© Adis International Limited. All rights reserved.

Neurotransmitter inter-relationships are impor-
tant since these interactions reflect the multidimen-
sional image of the different processes that happen
in the brain during exercise. In vivo methods will
allow us to explore the numerous interactions be-
tween neurotransmitters and receptors and get
more insight into areas such as neurotransmitter
release, metabolism, reuptake and receptor sensi-
tivity.
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